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On Detecting a Periodic Event 
by Means of Periodic Observations. I 

By Stefan A. Burr 

Abstract. The following situation is considered. A certain event is observable only 

intermittently according to some period. An observer attempts to detect an occur- 

rence of the event by making observations according to some other period. We wish 

to determine the probability P(s) that the event is first detected on the sth obser- 

vation. The period of the event may be known or unknown. This paper discusses 

the number-theoretic calculations necessary to solve the problem; computational 

aspects will be discussed in a future paper. 

1. Introduction. In this paper we consider the following problem. An observer 

attempts to detect an intermittently observable event by making periodic instantaneous 

observations at a fixed rate of one every p units of time. The event becomes observ- 

able every T units, remaining so for t units. The ratio t/T is a known constant 

'r < ?2. The observer begins his observations at a randomly selected time. We wish to 

calculate for each integer s the probability P(s) that the event is first detected on 

the sth observation. (It will be convenient to number the observations starting with 

zero.) We will consider first the case in which T is known; we will then turn to the 

case in which T is unknown, but has a known continuous probability distribution 

Q(T). In this paper we concentrate on the number-theoretic aspects of this problem. 

In [1], computational aspects of the problem will be considered. 

2. The Case of Constant T. 

THEOREM 1. Let 0 = p/T. Let n be the least integer for which InC - kl < r 

for some k. If nO - k # 0, let m be the least positive integer for which ImO -11 < r 

for some 1 and for which nO - k and mO -1 have opposite signs. Set r1 = InO -k 

and 12 = (1 - nr - (m - n)'rl)/n. Then 

r, O s Sn -1, 

P1, n Ss Sm -1, 
P(s) = 

T2, m Ss Sm +n -1, 

0, s>m +n. 

If nO -k = O, P(s) = r for O Ss Sn - 1, P(s) = O for s >n. 
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Proof. It will be convenient to transform the problem slightly by letting the 
observations have duration t and letting the moments of observability be instantaneous. 
This is clearly equivalent to the original problem. 

Let the zeroth observation begin at time zero, and let the event be visible at times 
(p,(p+ T, ( + 2T, * * *, where 0 < 0 < T. By assumption, all values of 0 are equally 
likely. The event will be observed at the sth observation if sp < ( + kt < sp + t for 
some k, or equivalently, if s < (/T + k < s + r. 

Thus, the sth observation, if unsuccessful, eliminates a range of length t of pos- 
sible values for (. It will be convenient to identify times differing by an integral 
multiple of T; thus we can consider them as being on a circle with a time x repre- 
sented by an angle 2irx/T. Observation zero always sweeps out a fraction r = t/T of 
the circle; typically, the next observation sweeps out a disjoint interval, and so on. The 
probability of first observing the event is r for each of these observations. 

Eventually, however, some interval must overlap another. Intervals u and v 
will overlap if luG - vO - zI < r for some integer z; this will first occur for u = n 
v = 0, z = k. We will refer to this first overlap as the primary overlap. 

Once overlap has occurred at n, it must occur at n + 1, n + 2, * * *, since 

l(n + 1)O - 0 - kl = I(n + 2)0 - 20 -k= =r1. Thus, the n observations 
0, * * , n - 1 produce n disjoint intervals, but no later observation can increase the 

number of disjoint intervals. Hence, in general we expect later observations to fill in 
the n gaps between the intervals, eventually sweeping out all possible values of (. To 
study the manner in which this happens, we distinguish three cases: nO - k = 0, nO - 
k > 0, and nO - k < 0. The first case is very simple; interval n exactly coincides 
with interval 0, and this case of the theorem follows immediately. 

We now turn to the second case: 0 < nO - k = ri1 < r. The interval correspond- 

ing to n is [nO - k, nO - k + r] ; that corresponding to 0 is [0, r] . Thus the 

primary overlap is in the forward direction; that is, the new interval overlaps the right- 
hand endpoint of the old. The interval at 0 has been increased in length from r to 
r + r1i. The amount of overlap of interval n + 1 with interval 1 is also r1, and 
so on. Thus each interval n, n + 1, * will sweep out a new amount r1 until 
such an interval simultaneously overlaps the left-hand endpoint of another interval, 
which must be interval zero. We will call the first occurrence of this case the secondary 
overlap; it occurs at interval m. 

Since the interval m simultaneously overlaps the right- and left-hand endpoints, 
respectively, of two intervals, it closes one of the n gaps between intervals. Clearly, 
the interval m + 1 closes another gap, and so on until all n gaps are closed. This 
occurs with interval n + m - 1; at this point the whole range of ( has been tested. 
We must calculate a the length of each gap when closed. The first n observations 

sweep out a portion r of the circle, the next m -n sweep out r1, and the last n 
sweep out a. Since all these must sum to one, we have nr + (m - n)'ri + nfl = 1; so 
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a = (1 - nr - (m - n)rl)/n = r2. 

From these facts, the theorem follows in the case 0 < nO - k. 
In the third case, namely nO - k = - r1 < 0, the analysis is essentially the 

same, with the words "right-hand" and "left-hand" exchanged. The condition that in- 
terval m first closes a gap, and thus determines the secondary overlap, is 0 < mO - 

k < T. The formula for -2 is unchanged. This completes the proof. 
We remark on the method of calculating the above values. For values of r 

which are not too small, it is not hard to calculate n, since we may search on either 
n or k and in either case need try at most [1/r] values. We may also use continued 
fractions, although no gain in efficiency is likely unless r is rather small. On the other 
hand;,m can be arbitrarily large. We therefore seek an efficient method of calculating 
m. Fortunately, such a method exists, which also leads to a simpler formula for r2. 

For the following theorem, we keep all the previous notation. 
THEOREM 2. Let r1 > 0 and let i and j, 1 < j < n, be chosen so that 

li - il is minimized. (If n = 1, take j = 0.) Set 

(I - nf - jr, l)nr, = K - j, 

where K is an integer and O _ y < 1. Then m = Kn + j and i2 = -1(1 --). 
Proof. We will consider only the case in which 0 < nO - k < r; the other 

case is treated identically. We also ignore the case n = 1, which is easily treated. It 

is easily seen that j is unique and that jO - i < 0, so that jO - i < - r. We now show 
that there exists an L > 1 such that m = Ln + j, 1 = Lk + i. Recall that by defini- 

tion m is the least positive integer such that - r < mO - 1 < 0. We have (Ln + j)0 
- (Lk + i) = (jO - i) + Lrl, so certainly some values of L give - -T < (Ln + j)6 - 

(Lk +i)<0,since r1i r. 
We must show that there exist no x < Ln + i and y not of the given form 

such that - r < xO - y < 0. Indeed, we will show more: that if L > 1 and (jO - 1) 
+ Lri1 < 0, then for no x < Ln + j and y can (jO - i) + Lr < xO - y< 0. Assume 
the contrary, and let L be the smallest value for which x and y as above exist. 

Certainly L > 1, since otherwise jO - i < xO - y - r1 = (x - n)O - (y - k) < 0; but 

obviously n < x < n + j, so the inequality contradicts the minimality of ijO - il. But 
on the other hand, if L > 1, Ln + j < x, we deduce from (jO - i) + Lri < xO -y 
< 0 that (j - i) + (L - 1)r1 < (x - n)O - (y - k) < 0, contradicting the minimality 

of L. 
Thus we have that the m and 1 sought have the values Ln + j and Lk + i, 

respectively, for some L > 0. We now must show that K = L. Consider the relation 
n-i + (m - n)'ri + nr2 = 1. The definition of r2 implies that 0 < r2 < ri I Hence 

nr + mr, - nl < 1 < nr + mrl, 
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so 

1-nr < mT < 1-nr + nl ; 

thus 

(1 -nr)/T Am <(1 -nr)/rl +n. 

But m = Ln +j, so 

(1 - nr)/r1 - j S Ln < (1 - nT)/ri + n - j; 

thus 
(1 - nr - jrl)/n'r < L < (1 - nT - jrl)/nln + 1, 

so that K = L. 
Furthermore, 

1 - nr - (m - n)r1 mTr + nr -1 
r7-2 n i - n 

Knr1 +r1i + nr-1 1-nr-jr71 1 
= 1 - - n -r~~'r.1 -,r,K + n~ . 

=7-11 - ). 

This completes the proof. 
Any method of finding n and k can be made to yield j and i simultane- 

ously with little additional effort; thus we have an efficient scheme for generating all 
the values pertaining to the function P. 

3. The Case of Unknown T. We now consider the case in which T, and 
hence 0, is unknown. Designate P(s), when 0 is fixed, by P8(s). Obviously we 
wish to integrate each value P0(s) with respect to Q(t). In what follows, we will 
consider R(0) = 1 - Q(p/0) instead of Q(t). However, any integration must be 
done carefully; as we will see, each P0(s) is continuous as a function of 0, but 
piecewise linear, having on the order of 1 /r2 pieces. This sort of function is very 
difficult to integrate numerically with any accuracy because of the discontinuities in 
the derivative. 

We will show that it is possible to locate the singularities of P0 (t) as a func- 
tion of 0 in a fairly efficient manner and thus to perform the desired integration with 
high accuracy. For some values of r the integration may also be faster than standard 
integration techniques. 

We begin by considering what values of 0 give InO - kl I Tr. We have 
10 - k/ni S rln; that is, 0 is in the interval [k/n - T/n, k/n + ir/n] = I(k/n) about k/n. 
Hence if 0 E I(k/n) and 0 I(i1/j) for any j < n with i/j # k/n, then InO - kI < r 
represents the primary overlap in the sense of Section 2. Clearly, (n, k) = 1. We also 
note that it is easily seen that n must be less that 1/r. Let N be the least integer 
> 1Ir - 1; we are thus led to consider the set of fractions k/n where (n, k) = 1 and 
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n < N. It will be convenient for the moment to let k assume positive or negative 
values. 

If these fractions are arranged in ascending order, the resulting finite sequence is 
called a Farey series of order N, often written FN. The properties of Farey series are 
well known; for instance, see [2, pp. 141-1441. We will use a number of properties of 
FN proved in [2]. Of course, negative terms do not have practical significance here. 
If k/n and k'/n' are two consecutive terms of Fx, we call the fraction 
(k + k')/(n + n') the mediant. We now state 

Property I. Let FX be given. Between every pair of consecutive terms k/n and 
k'/n' for which n + n' = x + 1, insert their mediant. Then the resulting sequence is 

F x+l 
The other properties can be easily derived from the first. 
Property II. If k/n and k'/n' are two consecutive terms of Fx, then nk' _ 

n'k = 1. 

Property III. If k/n and k'/n' are two consecutive terms of Fx, then n + n' 
>x + 1. 

Property IV. If x > 2, then no two consecutive terms of Fx have the same 
denominator. 

We will determine the manner in which the intervals I(k/n) overlap. Let k/n 

and k'/n' be two consecutive terms of FN. The right-hand endpoint of I(k/n) is 

(k + r)/n, and the left-hand endpoint of I(k'/n') is (k' - r)/n'. A simple calculation 
using Properties II and III shows that I(k7n) and I(k'/n') overlap. 

On the other hand, using Property II and the fact that N < 1 Ir, it can be seen 
that neither I(k/n) nor I(k'/n') overlaps the center of the other. Hence, about each 
k/n in FN there is a nontrivial interval J(k/n) C I(k/n) for which InO - kl r 
represents the primary overlap. We will call these J(k/n) the primary intervals. If 

k'/n', k/n, and k"/n" are three consecutive terms of FN, the left-hand endpoint of 

J(k/n) is (k - r)/n if n < n' and is (k' ? r)/n' if n' < n, since in the region com- 

mon to I(k'/n') and I(k/n) the primary overlap occurs at min (n, n'). We cannot 
have n = n' by Property IV and the fact that r < 1/2. Likewise, the right-hand end- 
point of J(k/n) is (k + r)/n if n < n" and is (k" - r)/n" if n > n". 

We now must determine within each primary interval J(k/n) subintervals within 
which the secondary overlap occurs at m. We first divide J(k/n) into two parts: 

J, (k/n), for which 0 > k/n, and J2(k/n), for which 0 < k/n. (As usual, we are not 
really concerned with k/n = 0, since this case will normally have probability zero.) We 

consider J, (k/n) first. Since 0 < nO - k S -, we seek the smallest m for which, 
for some 1, - r ? mO - 1 < 0. For the moment let n > 1 and let i'/j' and i/j be 

respectively the left-hand and right-hand neighbors of k/n in Fi, so that k/n is the 

mediant of i'lj' and i/j. (Note that they are neighbors in FnI not necessarily in FN-) 
Certainly k/n < 0 < i/j. We assume the contrary, that for some x and y with 
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x < n, IxO - y I is minimized, and that x 1 j. By a result of Section 2, 0 - y/x < 0. 
Also, since x < n, y/x is a term of Fn; thus y/x is to the right of i/j. Hence 
y/x - 0 > y/x - i/j = (yj - ix)/jx > 1 /jx, so that y0 - x < - 1 /Ij. On the other hand, 

i/i - 0 < i1/ - k/n = (in - kj)/jn = 1 /jn, 

SO jO - i > - 1 /n. But j < n, so y0 - x < jO - i < 0, which is a contradiction. Re- 
turning to the case n = 1, we see that we may use the convention i/j = 1/0. 

Since i10 - i I is minimal, we have from Section 2 that the m and 1 determin- 
ing the secondary overlap have the form Kn + j and Kk + i respectively, where K > 1. 
The condition that m and 1 determine the secondary overlap is easily seen to be 

-r < mO - l < - r+r1 

We therefore have - r < m0 - I < - ?r + n - k. Thus 

1- r 
< 0 < 1 - k - 

m -n 

Expressing this in terms of K, we have 

Kk + i - r 0 < (K - l)k + i - r 
Kn +1 (k- 1) +j 

We will designate such an interval by I, (k/n, K). Of course, it will often happen that 
some of these intervals are not contained in, or are only partially contained in, Jl(k/n). 
We wish to study the manner in which this happens. 

We see that each interval is adjacent to the previous one and that they decrease as 
K increases, having k/n as a limit. Thus, if Ko is the smallest integer for which the 
left-hand endpoint of I, (k/n, KO) is less than the right-hand endpoint of J1 (k/n), 
then I,(k/n, K) C J1 (k/n) if K > Ko, I1(k/n, K) n J1 (k/n) = X if K < Ko, and 

I, (k/n, KO) may in general be only partially contained in J1 (k/n). Hence, we wish 
to find Ko. We distinguish two cases. First, let I(i/j) overlap I(k/n), so that the 
right-hand endpoint of J1 (k/n) is (i - r)/j. The condition for this to occur is easily 
seen to be n + j > N. But this is also the right-hand endpoint of I, (k/n, 1), so that 

Ko = 1 and the entire interval I(k/n, 1) is in Jl(k/n). Second, let I(i/j) and 
I(k/n) not overlap, so the right-hand endpoint of Jl (k/n) is (k + r)/n. Then, we 
must have 

Kok+i-r k+r 

K n+j n 

Kokn +ni-n'j<?Konk +Konr +jk +jr; 

Konr > ni - jk - (n + j)r = 1 - (n + j)r; 

Ko > (1 - (n +j)r)/nr. 
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Thus Ko is the least integer greater than or equal to the right-hand expression. We 
will designate by I(k/n, KO) the interval defmed by 

Kok +i -r o k + r 
K n + j n 

The analysis for the second case, namely 0 < k/n, is essentially the same. The 
subintervals of interest in this case, designated by 12(k/n, K), are defined by 

(K- 1)k + i' + r Kk + i' + r 

(K - I)n +j < 0 S Kn + j' 

If n = 1, we use the convention i'/j' = - 1/0. As before, if I(i'/j') overlaps I(k/n), 

Ko = 1 and I2(k/n, 1) is contained in J2(k/n). If not, the expression for Ko re- 
mains the same as before, and I2(k/n, KO) becomes the interval defined by 

nk<- Kkn + j' K0n+ 

We are now in a position to integrate P0 (s) in each interval Jl(k/n) or J2(k/n) 
and thus to calculate P(s). As usual, we consider J1 (k/n) first. We know, from Sec- 
tion 2, that if 0 E J1 (k/n) n I1(k/n, K), then Po(s) is given by Theorem 1. But 
m = Kn + j, r1 = nO - k, 1 + jk = in, and some calculation leads to 

T2 = ((K - 1)k + i) - ((K - 1)n + j)0 - r. 

Thus, we may calculate the integral of P0 (s) over the interval I, (k/n, K) C J1 (k/n): 

41 (kIn, K)RI(0)d0 if O Ss Sn-1, 

I (kln,K)(no-kR'(0)d0 if n Ss SKn + j-1, 

111(k/n,K)PO(s) * R'(O)dO = f(kIn, K)(((K- I )k + i) -((K - )n +j)O -r)R (0)d0 

if Kn + j S s S (K + I)n + j - 1, 

0 if s>(K+1)n+1. 

The above expressions also hold for the interval I (k/n, KO), if applicable. 
Set S(0) = f0R'(0)dO, the indefinite integral of OR'(0), and let the endpoints of 

I, (k/n, K) or I (k/n, K) be a and ,B, a < ,. Then we may write the above as 
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,r(R(o)-R(a)) if O<s<n-1, 

n(S(13)-S(a))-k(R(3)-R(a)) if n<s<SKn +j-1, 

f'P6(s) *R'(O)dO = ((K- I)k + i - r)(R() -R(a)) - ((K - 1)n +j)(S(j3) -S(a)) 

if Kn + j S s < (K + I)n + j - 1, 

0 if s>(K+1)n+j. 

We could use these formulas to calculate the values for each subinterval and sum 
them all to get the desired values of P(s); however, we can simplify the calculations by 
combining the integrals over sets of subintervals. We will let acK and acK+ 1, with 
cYK + 1 < aK, be the endpoints of the interval I, (k/n, K). Where we have replaced 

I, (k/n, KO) by I(k/n, KO), we will let aYK0 and cYKO+j designate the endpoints 
of I'(k/n, KO). We will calculate, for each t, 

J1(k/n)PO(s)R(O)dO = fKO P0(s)R'(O)dO. 

We first observe that if 0 < t < n, this integral has the value 

(1) r(R(aKo) -R(cYKo+ 1)) + r(R(KO+ 1) -R(aKO0+2)) + 

= r(R(cYK )-R(k/n)) = rR(k/n, aYK ), 

where R(01, 02) and S(01, 02) denote R(02) -R(01) and S(02) - S(01), respect- 
ively. Next, we see that if n < s < Kon + j, the expression for the integral is the sec- 
ond one appearing above for all subintervals. Hence, in this case, making use of similar 
cancellations, 

(2) J1(k/n)PO(s)R (O)dO = nS(k/n, aYK) -kR(k/n, acK ) 

Finally, for each K > Ko consider the range of values Kn + j < s < (K + I)n + j. 
The subintervals (if any) with index less than K give an integral of zero; the expres- 
sion for the integral over subinterval K is the third appearing above; and the expres- 
sion for the integral over all subintervals with index greater than K is the second 
appearing above. Hence, in this case we are led to 

(3) J (kn)PO (s)R'(dO = ((K - I)k + i - r)R(k/n, aK) - (Kk + i - r)R(k/n, aK + 1) 

- ((K - 1)n + j)S(k/n, aK) + (Kn + j)S(k/n, aYK+ 1 ). 

We now consider the integral over J2(k/n). The formulas for the integral over 
I2(k/n, K) become 
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7(R(1 -R(a)) if O S s S n - 1, 

k(R(1 -R(a)) - n(S() - S(a)) if n S s S Kn + j' - 1, 

f:PO(s)R'(o)do = ((K - I)n +j')(S() - S(a)) - ((K - I)k + i' + r)(R(3) -R(a)) 

if Kn + j' S s S (K + I)n + j' -1, 

0 if s >-(K+1)n+j'. 

We let OK and OK+ 1 be the endpoints of I2(k/n, K) or I24(k/n, K), with OK < K+ 1 

and with K' in place of K. The integrals over J2(k/n) become 

(4) TR(O3K 0, k/n) if O S s < n, 

(5) kRK30, k/ln) -nS(I3K0, k/n) if n ?s<KKn +j', 

12 (k /n))PO(s)R(0)dO = ((K - 1)n +j')S(3K, k/n) - (Kn +j')S(qK3+l k/n) 

(6) -((K - 1)k + i' + T)R(OK, k/n) + (Kk + i + 7)R(3K+ 1, k/n) 

if Kn + j' S s < (K + I)n + j', K > K'. 

Formulas (1)-(6) provide the basis for calculating P(s), and at this point the number- 

theoretic work necessary is complete. In principle, all that is now needed is to sum the 

calculated values over all k/n e FN. However, to use these formulas effectively, it is 

necessary to study the computational aspects of the problem. This will be the task of 
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